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Appendix J
Conditions for Near-Equivalence between

dG d†(ν) / ν  and α̃ ν ν( ),, , and between
d G d2 2†( ) /ν ν  and d dα̃ ν ν ν( /, )

Since ρ ρ ν= †( ) marks a stationary point for G[ , ]ρ ν  where ∂ ∂ρG / = 0 , it
follows from Eq. (13.2) that
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Carrying out this program in Eq. (J-1) and using the asymptotic form for
G[ , ]ρ ν  given in Eq. (5.7-2), we have

dG

d
d n

d

d
K

d n

d
y y d

d G

d

d n

d

d
K

d n

d
y y d

x

x

x

x

†

†

†

†

( )
˙

log log
Ai[ ˆ] Bi[ ˆ] ,

( )
˙

log log
Ai[ ˆ] Bi[ ˆ]

ν
ν

ν
ω

ω

ω ν
π

ω
ω

ν
ν

ν
ω

ω

ω ν
π

ω
ω

ν ρ

ν ρ

=

−
−

− +( )

=

−
−

− +( )

∞

∞

∫ ∫

∫ ∫

2 2

2 2

2

2

2

2 2 2

2

2
2 2



















(J-2)



608 Appendix J

where ˆ ˙ ( )  y K= −−
ω ν ω1 . Here x  is a chosen point where the accuracy of the

asymptotic forms for the Airy functions is deemed adequate when ρ ≥ x . From
geometric optics, we have from Eqs. (5.6-2) and (5.6-15)
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Comparison of Eqs. (J-2) and (J-3) yields for dG dρ ν ν ν†( ), /[ ]
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From Eq. (5.6-2), we have
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Integrating by parts and using Eq. (5.4-3) to express the end value in terms of
ŷ , one obtains
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We can continue integrating Eq. (J-6) by parts. It is clear that by successive
integrations we can build up a series of terms, all evaluated at ρ = x . Similarly,

in Eq. (J-4) for dG dρ ν ν ν†( ), /[ ] , we have
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It is readily shown that
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In particular, when x K= +ν ν2 ,
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Thus, even for x as low as x K= +ν ν2 , the end terms in Eqs. (J-6) and (J-7) are
equal to three significant figures. When n( )ρ  is slowly varying, it follows that
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The accuracy with which Eq. (J-10) holds depends on the curvature in
n( )ρ , provided that we choose x > ν  so that the asymptotic forms for the Airy
functions are not significantly in error. For the examples shown in Figs. 5-4 and
5-5, K Hν / ~ 10 3− , that is, dn d/ ρ  is slowly varying relative to the range of ŷ
values ( ~ ˆ− ≤ ≤2 2y ) across which the Airy functions make their transition to
asymptotic forms. This ratio is generally small for thin atmosphere conditions.

The accuracy of Eq. (J-10) can be checked by comparison of end terms at
ρ = x  after successive integration by parts in Eqs. (J-6) and (J-7). For example,
for the next integration by parts, it can be shown that
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where Γ( ˆ)y  has been given in Eq. (4.9-5) and shown in Fig. 5-12. Thus, the
difference between Eqs. (J-6) and (J-7) in the end terms after a second
integration by parts is about 0 2. /ν ′′n n . If ρ ρ αd n d2 2/ << , then a close
correspondence between spectral number in wave theory and impact parameter
in ray theory should hold. For an exponential refractivity profile in terms of an
impact parameter scale height Hρ , the inequality ρ ρ αd n d2 2/ <<  translates

into the scale height inequality, H k roρ λ>> ( ) ≈−1 1 3 0 01/ . km/ . However, Hρ

is an impact parameter scale height. It relates to a distance scale height Hr  by
H d dr H H Nrr rρ ρ= = +( / ) ˙ . Therefore, a value Hρ = 0  corresponds to a

boundary of a locally super-refracting medium; the critical gradient is
dn dr n r/ /= − , or Hr ≈1 5. km . Bending angles are no longer defined for
dn dr n r/ /< −  when the tangency point of the corresponding ray lies within
such a layer, or even below it if it is too near the lower boundary.

It follows that when dn d/ ρ  is slowly varying relative to ŷ  (i.e., the change
in refractivity gradient over the Airy function transition width, from an
exponential form to a sinusoidal form, 4Kρ , is very small), and specifically

when a super-refracting medium is avoided, this near-equivalence between
dG d/ ν  and ˜ ( , )α ν ν  holds. We have from Eqs. (J-4) and (J-11)
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Similarly, it can be shown from Eqs. (J-1) through (J-11) that
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